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1. INTRODUCTION

IN A series of recent papers [5—7] the present authors have studied questions of continuous
dependence and uniqueness for solutions of various classes of initial boundary value
problems in linear anisotropic elasticity. Logarithmic convexity arguments have been used
in these investigations and in particular uniqueness has been established for the various
classes of problems with no definiteness assumption on the energy.

In this paper the same convexity methods are used to examine the question of continuous
dependence on the initial data of solutions to the linear anisotropic thermoelastic initial
boundary value problem. Here, again, we are able to deduce uniqueness under rather weak
assumptions on the coefficients in the governing equations.

Similar techniques have recently been used by Knops and Steel [8] to derive new
uniqueness results for elastic mixtures.

2. STATEMENT OF PROBLEMS CONSIDERED

We assume that a linear anisotropic thermoelastic material occupies a closed bounded
region B of three space with sufficiently smooth boundary dB. The governing equations
have the following form (cf. [4]):

A P BN 21
Po ax\ Max| Tax, ) TP @D
and in Bx(0, T],
Wy ep, S 0, O 22
o kgt ax\"Vox, @2

where u(x, t) designates the cartesian components of displacement, 0(x, t) is the temperature
deviation and the % are the cartesian components of the prescribed body force per unit
volume. In (2.1) and (2.2) the convention is adopted of summing over repeated suffixes
whose range is 1,2, 3. We are interested in the behaviour of the material during only the
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finite time interval [0, T]. Therefore we have restricted (2.1) and (2.2) to the cartesian
product of the sets B and (0, T']. In the equations (2.1) and (2.2), the constant ¢ is prescribed.
while the elasticities ¢;;,(x), the density p(x), the conductivity tensor a;{(x) and the quantity
F;jx), assumed to be prescribed functions of x (x,, x,, x3) alone, satisfy the following
restrictions :

(@) p = p, > 0for constant p,,,
(b) there exist finite constants M, , M, such that

F.F,; < M3, — —— < M3,
7 ox; 0xy (2.3)

(c) Cijki = Ckilijs a;; = daj,
(d) ay; is positive-definite i.e. there exists a positive constant a, such that

a;;8:¢; = aolis;

for all vectors ¢;. (This last property accords with the Clausius—Duhem inequality.)

The type of initial boundary value problem considered here is that in which the tem-
perature, displacement and velocity are initially prescribed. In addition, the temperature
is prescribed on a portion & of B, the heat flux is given on 0B—g, the displacement is
prescribed on a portion T of 8B, and the traction is given on dB—X. We shall, however,
limit our attention to the special cases:

(a) éB—a isempty
or (2.4)
(b) JB—X isempty

and further consider only classical solutions of (2.1) and (2.2), assuming in particular that
the displacement and temperature are continuous in the closure of B. Naturally we could
equally well treat classes of weak solutions to the above problem, as was done in [5].

Throughout this paper, we shall say that «; and 6 are solutions of problem # if they
satisfy (2.1) and (2.2), the designated initial conditions and either boundary conditions
of type (2.4a) or of type (2.4b). Further, the displacement is said to be of class 4" (u;€.4)
if it satisfies the inequality

T
f f puu; dx dnp < N?
0 YB(m

for some prescribed (finite) constant N ; here, and later, the symbol B(¢) means integration
over the body B at time t.

If ¢ = 0 then equations (2.1) and (2.2) become uncoupled in the sense that (2.2) is
independent of u; so that it reduces to the ordinary heat equation. The quantity
(8/0x,)(F;;0) appearing in (2.1) may then be regarded as an additional body force term so
that the results of Knops and Payne [7] are applicable. Thus, without loss, we assume
in the sequel that ¢ # 0.
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3. STABILITY UNDER PERTURBATIONS OF THE INITIAL DATA

Let (4}, 0') denote a solution of problem £, and (17, 6%) a solution corresponding to
the same body force & and boundary conditions but with different initial conditions.
Without loss then we may consider solutions u; = (u} —u?) and 0 = (6! —6?) of 2 with
#; = 0 and with homogeneous boundary data. This problem is designated by the symbol
%,. The object of this paper is to examine the dependence on the initial data of solutions
to #,. In fact, we establish the following theorem:

TureoreM 1. If (u;, 6) is a solution of Py and u;€ A then for finite time it is possible to
determine explicit positive constants K; such that

t 25 Ou; Cu;
puit; dx dnp < KyN1°< K, U dx+K3j p— —dx
0 /B B(0) s 0 0t
(3.1)
5u, 5uk 2 1-8
+K4f ”kl dx +K5f 64 dx R
B(O) 536 5 X1 B(O)
where
_ 1—exp(—Kot) (3.2)

T l—exp(—KoT)

The proof of this theorem makes use of logarithmic convexity arguments similar to
those employed already by the authors in treating the corresponding elastic problems [5-7].
Before proceeding with the proof, however, we first develop some auxiliary lemmas.

Lemma 1. If (u;, 6) is a solution of &, then

! ! o8 o8
0? dxd +sz t—ma— L dxd
fo Btn) 1 0 B('I)( ’?) }axi axi e
] (3.3)
< ezdx+2[d1+d2t]ff 1o 2 O g,
B(0) B(n) 5'7 an
a0 69
szx+f j a; xd
B() B(y) Jaxz 5xj 1
(3.4)
<(+ve) | 02 dx+[(1+v0)dy + (v~ +17)ds] j f O iy i,
B(0) Bm n on
where
M 2M3c?
dy = dy = =225 (.5)
pmaﬂ Pm

and v is an arbitrary positive constant.
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To prove this lemma we observe that from (2.2) and an integration by parts it follows
that

t t
J. 0*dxdy = — (f ~(t —)0? dx dn
0 JB(y) B(n)“?

! O
rf 0? dx+2f f (t— 0" dx dn (3.6)
B(0) 0 < B(n) on
“
tf ozdx—vf f ,qu D i dn
B(0) 0 Bw) CX;

+2cff (t— )Vﬂ [,J()]dxdn
0V B(n) cx

An application of the arithmetic-geometric mean inequality to the last term gives for
arbitrary positive constants «; and a5,

: 3
2¢ f f (t—n)f 0] dx dn
0 J By ox

! 20 66
< |(Ipm2{alf 6 dx d11+1zf f n)a,, < i -dx dy (3.7)
0 VB(n) B(rl)

J
p
S e S
oy 4ol B(q) n on

Thus by choosing |c|p,, o, = 1 and |c|p,, *%; = } we find, upon insertion of (3.7) into (3.6)
that inequality (3.3) results. An immediate consequence of (3.3) is the further inequality:

20
f f 0 dxdn+2f f —ag Lo—dxdn
Bi(n) B(n) 9 Xj

Sus
< th 0> dx+2dt +d,t )J. f us ﬂuldxdn,
B(0) B(n) 5'7 on

with d, and d, given by (3.5).
Just as in the derivation of (3.6) it follows easily that

! o0 ol u; ¢
()de+2ff a; ‘ ———dxd —f 02dx+2(J.f : F0)dxdy. (39
Lm oo 10X, Ox 1 B(0) B O 0’6 Jdxdy )

Again using the arithmetnc—geometric mean inequality on the last term with appropriately
chosen constants, and making use of (3.8), one obtains immediately the desired inequality

(3.4) and the lemma is proved.
It is worth noting that if ¢ is not empty one could use, after an application of the arith-

metic—geometric mean inequality, a bound of the type

! 70 o0
f J 0?dxdy < — f f ¢ dx dn, (3.92)
0 JBm Adg B(n) cx ﬁx

where 4 is the first eigenvalue in the corresponding fixed—{ree membrane eigenvalue
problem for B. Using such an inequality, it would be possible for computable constant d;

(3.8)
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to derive an inequality of the form

! o0 06 Ou; Ou;
92dx+J.J a;;— ——dxdn < 9> dx+d J.f — —dxdpn,
B() 0 VB Jaxz 6x 1 B(0) ? B(n)p on on

instead of (3.4). A combination of (3.9a) and (3.9b) would then give
Ou; du;

1 1
62dx+Aa0J‘ *dxdy < szx+d3f f p— —dxdn.
Bin) B(0) B

B on on

If ¢ is empty then, by (2.4), 3B— X is empty, and since

l 3
fdx = de—cf j i(ﬂj)%dxdn,
BG) B(0) 0 JBop 0X; on

we can make use of Poincaré’s inequality to obtain instead of (3.9b),
! o0 06 z
0? dx+f f 4= —dxdn < 0? dx+d4t[ 9dx]
B B(n 6x; 0x; B(0) B(O)

Ju; Ou;

t
+{ds+d t)jf — —dxdy,
sTe 0 Bm)a’l on

for computable d,, ds and dy.
LeMMA 2. If (u;, 0) is a solution of P, then the function

! o0 06 Ou; Ouy Ou; Ou
= 24 2f f a; —~ dxd f T b
J(t) B(2) 0% dx+ 0V B(n) Jax, ax xdnte B(1) P ot ot e Jklan 8x, dx

is a constant independent of time.
This result arises from the identity

' Ou; 52ui 7 diuy
’ _J. fB(ﬂ)%{pW__é;( ’f“(}xl) [ 9]} dx dn

= E(t)— E(0)+ f J'B( )‘Z"' o [Pyl dxdn,

where

u; Oy Ou; Ou
E(t) = 1f I e .
0=: B [,o ot ot +C"“6xj ax,] dx

1177

(3.9b)

{3.9¢)

(3.10)

3.11)

(3.12)

Here, we have made use of the symmetry condition (2.3¢), and an integration by parts.

But if (3.11) and (3.9) are now combined we obtain
J(t) = J0),

the required equality.
Lemma 2 gives us a conservation law for the quantity J(¢). If ¢ > 0 and

J. Ciptfipadx = 0
B

(3.13)

for all tensors y;;, then (3.10) yields immediately ordinary Liapounov stability in the
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J-norm and we need proceed no further. (Indeed, this result closely resembles the hinear
version of one obtained by Ericksen [2, 3] in discussing thermoelastic stability.}
Otherwise, let us define

! -
(1) = f J puu; dx dr1+(T—t)J puge; dx + 7, {3.14)
B B(0)

where the non-negative constant y, dependent upon the data, is to be determined later
and let us proceed to establish the inequality (3.1) with the help of F(1).
Now, differentiation of (3.14) yields

dF ! M.
— = f ougu; dx — f puu; dx = 2f f puigﬁ dx dy, {3.15)
dr B(») B(0) 0 J B n
and
d’F Cu; ! du; Cu
e = 2 U—— dx = 4J J p = dx dn—20Q, (3.16)
dr? m,)p Ot s n
where

0 =2 Emdn+ | | wlthmaxdr-| puias
0 ovBm CX; B0} et

= 2tEQ)+(t/c) 0% dx — f pu,A»dx (1/C)J 0% dx dy
B8(0) Boy Ot B(rn

0 00
*(2/c)ff a,,i f dxdy +ff Foldxdn,  (3.17)
Binm) ox B OX;

according to (3.10). An application of the arxthmetrlc—geometrxc mean and the Schwarz
inequalities to the last term yields

0 < AEO)+(t/c) | 02 dx+(3/2lc]) f [ o2 dxdy

Bi) 0 J Bin)
“()
+(2/lel) f f a; e o ¥ dn— J ;& ,—~ Fdx -+ (da/4)c]) f pugit; dx dip
Bm) ax; Boy O Bm
a0 20 Lz
+(di e {ff uu; dx d ff a; —dx dn} ) (3.18)
(di"*/ic) . Bm; ny, o 0%, %,
Let us now make use of (3.3) and (3.4) to write
('u cu
0 < HE©)+{t/0) { o* dx+(3/2§cri){2ff 62 dx+2(d, +dzz)f f (; o
JBO) B0} B(n) n

/2

H i
xdxdn} - f o2 4+ (d /) f f pu,-u,-dxdn+(d%f2/|c|){ f f puiu.-xdxdn}
Boy Ol 0 B 0 < Bim)

1/2
xl:{(l«kvt) 0* dx} +{(1+vr) d,
B(O)

H 1/2
=1 42 12 ”’“”‘*d d (3.19)
’%‘{\f + 1t ) dz} {J‘O jﬁ{n) a’? a’? X QY s
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where in the last expression we have used the fact that for real numbers a, and a,

(a3 +a3)'"? < |ay| +|aal. (3.20)
Let us rewrite (3.19) as

dl+d2)ff Ju; Ou; [dz ]ff
<0+ — —dxdn+ uu; dx d
¢=0 B(n) 5 on 1 4| 2c* B(ﬂ)p g

d du; 0 112
+J-{(1+vt)d1+(v—1+t2)d2}1/2“f pu,.u,.dxdr,ff p i iy d} ,
|| 0 JBm) 0 VB 511 on

with Q; being given by :

(3.21)

14wt

o
] f 02 dx — f ou 4y (3.21a)
B(0) B(0) ot

We shall further require in subsequent calculations the following two lemmas:
LemMma 3. If (u;, 0) is a solution of &, then

dF ( dF

—+2 u; dx. 3.22

dr| = )y P (3:22)

Q, = 2tE(0)+ [t{c‘1 +(3/2c))} +

This lemma follows trivially from the inequality
dF
— < f puu; dx+ f PUU; dx.
dt B() B(0)

LeMMa 4. If (u;, 0) is a solution of P, then

Ou; Ou; 1 dF
o] ot Shaxan <3 Gt [ et omioi— di] dns 44, el
n,

a
A, A, A
+“( Agt —1)F(t )+A2—1,:J ][(Azt-l)e’“'-i-l] pui; dx, (3.23)
A, 2 A4 B(0)

where y is given by (3.14), Q, by (3.21a) and

1
Al = 4—c2{d1[(1 +VT)d1 +(V_1 + Tz)dz]'f'lcldz +2d1},

(3.24)

3
A2 = H(dl +d2T)

To prove this lemma we note from (3.16) and (3.21) that

f J‘ Ou; 6u 1d°F Q
B(n) n 5’1 4de? 2
1 d&°F Q1 3(d, +4d,t)
<-—-—+=—4+—=- — " fdxd
24 2 ffm)””aa xdn

2 Ou; Ou;
w; dx dy +~ ff p— —“dxd
(8|C| )f Lm g () B() a'1 on 1

+——2[(1+vt)d1+( BRE A dz]ff puu; dx dn. (3.25)
B(n)
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Here we have used the arithmetric-geometric mean inequality on the last term of (3.21).
Combining we have

cu; Cu; 1 d*F Cr
ff Saxan <5 Qa0+ a | | (= oy 2y X0
0 JBm < 0 ”l

"’7 on B(n)
-+ Al(t) j J pu,-uidx d”], (326)
0 v B(n)
where

A0 = § o [0+ v0dy (7 002 +lelda + 24, < Al.l
o ( (3.27)

l ‘

Agft) = ﬁf"-)- < 4,. }

C

Upon replacing 4 (t) and A,(t) by their respective upper bounds A, and A,, we may easily
solve (3.26) for the third term on the right to obtain

: CU; Cu; 1 d*F !
f f (t—mp ot Pdxdn < e”‘”{-j e fdn+ f e Q- Ay]dy
0 v B(m) dn dn 2Jo d

+ A, f e 12 (y) dn} . (3.28)
0 o

On integrating the first and last terms by parts in opposite directions, we obtain in a straight-
forward way

! Ou; Cu; 1 df
[ ot Saxan <350+ [ etemmg, - aian- 3 Fuy
0 J B an an 2d

A, A, A,
—FO)e* +| “4—
+A2()e +[2+AJ

Again, since dF/dt + 'fB(O) pu;u; dx > 0 it follows trivially that

t F
J eAalt —m?‘,. dn.  (3.29)
o dn

' 1
[ e '”d dn < eFO - FO)+ (A= De' 1] | pugdx. (330
{

) 2 B(0)
and insertion of (3.30) into (3.29) establishes the lemma. We note of course that F(0) > .
We are now ready to proceed with the proof of the theorem. Using (3.14), (3.15), (3.2
and (3.27) we form
d?F (dF 2

— ) > 452 -2F
az \a) =7 Q

Cu;
> 457 —2F%\Q1+AZJ f n)p—;» ;—udx dy
B(n)

(—+d1/2c )J J puu; dx dn
4' ' B(n)

d2 u Cu 1/2
+ |44, —~——2d,/c f'[ U dxdr]J‘J —u-d ] }
[ Yold i/ ] l: Bmp By 01 O

(3.31)
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where

ou; Ou; 2
= ;dxd ff o dxd [ff pU;—— dxdnJ >0. (332
s? f Lm) puu;dx dn Bm)ﬂ an 511 nH— 8 on

Now using lemma 4 it follows that

d*F |[dF\? , dF (d, d, 24, -
== —2FI,— R —F2 Ayl Ap 4T H1—eT T e TF2
e dt) > 45 —2F L, — A;F o~ 5 I Rk )
4d, 8d, dF\2) 172
————| F<st4|— 3.33
[‘“1 d c2] {”(dt)} ’ .
where
I, =0+ A2 4 :|[(A T—1)e*T +1] pugu; dx
2 A B(0)
' Azt~ dy dl 1 42 42T
A [ SO, Apldn—| el lh—baen T (34
0
Clearly
dF| 2|42 dF dF
< —| < s+—+2 u; dx, 335
I:s +(dt) ] < s+ i S+dt+ B(O)pu,u, b ( )
the last inequality following from lemma 3.
Let us now take y of the form
. R . Ou; Ou; .
v = ko f 0% dx +k, f pugt; dx+ &, f p 2 Y g L kA E0), (3.36)
B(0) B(0) Boy Ot Ot
with the k;’s chosen so large that
1/2
12+[16A1———8d1/c jl J puu; dx < 0. (3.37)
|c] B(0)

This means that for fixed computable k we must have
d, dy ! _
{%A% et +4|2| + } > 0,+A4, f e 09 () dn+k puu;dx,  (3.38)
0 B(0)

which is clearly possible in view of the expression for Q; .
Making use of (3.37) and (3.35) we now have

d’F (dF\? _ - . dF
——|—| >4s>~K,F*—K,Fs — ar
dtZ (dt) = 4 1F KzF? K3F dt’ (339)
where
& 24
K,=4 [:AZ—{-——(] —AzT):' AT 2d|2|+d1
4 4d, 8d,|Y? b
f2= [16/11_?[3_721] : (3.40)
Iz3 = E2+A2
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The non-negative terms resulting from (3.37) have been dropped on the right. If we now
complete the square on the right and again drop the non-negative term we obtain

d*F [dF\? dF
e — | —| = =2k F*—k,F--
a2 (dr) = -2k, ko F Qi (3.41}
where
16K, + K3 N
1 = "*’%2 2, k2 = K}.

If F(t) is identically zero for 0 < ¢ < T the problem is of no interest. Hence, we assume
that there exists an open interval (¢, t;) on which F(t) > 0. Thenfor0 <1, <t <t, < T
we may divide (3-41) by F? to obtain

%(% %1;) % %?4—21(1 =0, (3.42)
or

d? d

g0 ko g (In F)+2k; = 0.
On setting

T =g k2
we may write (3.42) as
'miz{ln(Fr“”“/“Z)} 20, (3.43)

where F is now to be regarded as a function of 1. Jensen’s inequality together with the
continuity of F(t) then gives

F(T)T—Zkl"/k% < [F(TI)TIA 2k1/k§J(r ~12){(ty ~rz)|:F(',L.2)Ié— Zkl,/kf](n — ) (tq - rz)‘ (344)

where

T, = e ki, 7, = ¢ ka2 (3.45)
Now, either F(t,) = 0ort, = 0.If F(t,) vanishes then it follows from (3.44) that F(t) vanishes
identically for t; <t < t, and hence for 0 < ¢ < T. This fact clearly implies the uniqueness
of the solution u; to problem #, under the assumptions of the theorem. Thus, without loss,

we may take t; = 0 and so obtain from (3.44)

F([) ekat/kz < [F(O)](e—kztfeszi/(l —e~k2'l‘)[F(T’ e2k1 T/kz](l —e oty —e” "z'r)' (346)

Since u; € .4" it follows from (3.14) and (3.36) that if the initial temperature, displacement,
and velocity are square integrable and the initial energy is finite then there exists a finite
constant N, such that

F(T) < Ni. (3.47)
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Then immediately from (3.46) we have

1-6
pug; dx +y < e2aldeT “']/"ZN?[T.[ pu; dx + y} ,
B(0)
(3.48)

t
f f puy; dx dn+(T —1)
B(n)

B(0)

with & given by (3.2) (with K, replaced by k,). Inequality (3.1) then follows with the help of
(3.36), the arithmetic—geometric mean inequality and other simple devices.

4. EXTENSION OF RESULTS IN SECTION 3

The continuous dependence inequality of Theorem 1 does not directly imply the
continuous dependence of 6 in any appropriate norm on the initial data. However, in order
to establish this conclusion we integrate (3.3) and (3.23) with respect to ¢ to obtain respec-
tively

ftf (t—n)0? dx dn+ ff (t—n)a % 46 dxdy < tzf 6% dx
— x — i'—_- —_— <
0 v B(n) 1 g 0 Y B(n) 7 ox; 0x; B(0)

+[d1+d2T]fJ (t—n)2p2t Mg dx dn, 4.1)
B(n) a 6

and

f f O Ui G dn < byF+byy, 4.2)
2 0 B(n) 6

where the b; are computable positive constants. Substitution of (4.2) into (4.1) and use of
(3.1) then clearly establishes the continuous dependence of 6 in the norm

06 00
1) = ” (t—n)6> dx dn+» ” a2 dx dy 4.3)
B(n) 2 B(n) 6 8

on the initial data measured by an appropriate norm.

Continuous dependence of 6 in our L,-norm may be obtained from (3.4) together with
the inequality derived from (3.1) by replacing u; with du,/0t. Now, however, the initial data
must be such that the displacement, its first and second derivatives are all initially square
integrable.

Finally, the results of this section together with Theorem 1 yield the following two
corollaries :

COROLLARY 1. There is at most one solution of the problem %.

A uniqueness theorem for the generalized solution of 2, based however on the stronger
requirement of a definite energy, is proved by Dafermos [1].

COROLLARY 2. In Bx [0, T] the solution of the problem P depends continuously on the
initial data (where both solution and data are measured in appropriate norms) provided the
displacement u; is of class N.
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It is of mathematical interest to note that if (2.1) and (2.2) were of slightly different
form, i.c.

Py ¢ Sy F o6 P .t
e TP T T = P, 2.0
P l—r)tz ("Vi ik (”"XI 4 (F?’Xf f { }
and
a0 ¢ u é o0
e RS - e, 22"
ot (:x! Y {3{ (“»’X,‘ Uﬁx!« ( }

the mathematical problem would have been somewhat simpler and in fact the requirement
of uniform boundedness on the derivatives of F;; could be removed altogether. Unfor-
tunately the thermoelastic system is not of this form.

Note added in proof—Since completing this manuscript, the authors have become aware of an earlier proof
of Corollary 1 (uniqueness) by L. BRuN, C. r. hebd. Séanc. Acad. Sci., Paris 261, 2584-2587 (1965) and Jnl Méc.
8, 167-192 (1969). Brun’s approach, based upon reciprocity, is however entirely different to that adopted here.
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